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Interface–turbulence interactions in large-scale bubbling processes
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Abstract

A novel large-eddy simulation (LES) approach for computation of incompressible multi-fluid flows is presented and applied to a tur-
bulent bubbling process driven by the downward injection of air into a water pool at Repipe � 17,000. Turbulence is found to assume its
highest intensity in the bulk of the gas flow, and to decay as the interface of the growing bubble is approached. Shear flow prevails in the
area of jetting from the pipe, buoyancy-driven flow prevails away from the jetting region, and a third region of vigorous bubble break-up
lay O(100)–O(101) pipe diameters above the tip. Cascading of turbulent kinetic energy is accompanied by an instability-induced linear
cascading of interface length scales (i.e. azimuthal modes), transferring energy from the most unstable mode to the smallest interface
deformation scales. The LES shows the out-scatter of energy from the large-scale gas-side vortices down to interface wrinkling scales,
and statistics prove the existence of a strong correlation between turbulence and interface deformations. Surface curvature was found
to constitute a source of small-scale vorticity, and therefore of dissipation of turbulent kinetic energy.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Bubbling mechanisms and induced mixing occur in a
large range of multi-phase flow systems, with a significant
sub-set of these processes featuring large bubble injection
to sustain the flow. Driven by high-volume, moderate
velocity gas injection into liquid baths, such flows are often
chaotic and turbulent, and can feature a wide spectrum of
interfacial length scales. The turbulence resulting from
large bubble injection alters the characteristics of the heat
and mass transfer in bubbling flows. Bubble motion in bub-
bling processes has, for the most part, been inferred from
idealized flow events such as single bubble formation and
the rise of single or pairs of bubbles. For turbulent bub-
bling processes, little has been done so far experimentally
or numerically to elucidate the relative importance of each
such bubbling event in arbitrary bubbly-jet processes, and
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the mechanisms promoting or suppressing certain
sequences of events. The behavior of deformed and spher-
ical bubbles differs significantly in terms of alignment and
dispersion: deformed bubbles could be associated with sig-
nificantly different flow structures as compared to spherical
bubbles, but modified energy decay due to pseudo-turbu-
lence is ubiquitous (Bunner and Tryggvason, 2003). Differ-
ences in the bubbling can affect the turbulent structure
throughout the multi-phase flow. Based on the database
analyses of van den Akker (1998), ‘‘phase locking’’ was
proposed as a possible cause of coherent structure genera-
tion, and an analogy was drawn between the von Karman
vortex sheet behind a blunt body and the staggered
arrangement of vortices in the liquid phase on either side
of a meandering bubble plume.

A feature of the flow in bubbling processes that has been
neglected to date is bubble break-up. In a study of the
oscillation and break-up of bubbles in a turbulent field in
micro-gravity, Risso and Fabre (1998) demonstrated tur-
bulence to be potentially responsible for the deformation
and break-up of individual bubbles. Kolev (1993) reviewed
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the numerous models for bubble break-up, in particular
those based on a force balance between shear stress around
the bubble and surface tension. The force balance concept
forms the basis of the theory of Kolmogorov–Hinze (Kol-
mogorov, 1949; Hinze, 1955), postulating a critical Weber
number for bubble break-up. The theory identifies reso-
nance oscillation, in which eddy excitation and bubble
oscillation are in phase, as an additional mechanism for
bubble break-up. Martinez-Bazan et al. (1999a,b) injected
air bubbles into fully developed turbulent water flow, and
measured the resulting bubble size probability density func-
tion (p.d.f.). Bubble break-up frequency was determined as
a function of bubble size and a critical diameter, depending
on the surface tension and the dissipation rate. Break-up
frequencies were shown to scale differently for large bub-
bles, as compared to bubbles sized in the order of the crit-
ical diameter. This result led to the identification of two
distinct bubble size regimes.

A common feature of the studies discussed above is that
turbulence is active in the liquid phase flow only, because
the dispersed phase is formed by small size bubbles. Thus,
extending the relevance of these studies to large-scale bub-
bling processes cannot be justified. Liquid-side turbulence
in bubbly flow is important (for mixing) in regions far away
from the source of bubble generation, where upstream flow
events such as bubble formation and detachment can be
ignored. In reality, vigorous break-up of large bubbles is
a precursor to idealized bubbly flow. Additionally, in the
case of bubbling processes, the establishment of a turbulent
liquid-side flow is necessarily the result of a turbulent jet
flow from the pipe. Interface–turbulence interactions and
the physics involved in the break-up process are poorly
understood. The description of bubbling by means of sim-
plified models for bubble formation, bubble-rise and break-
up will not properly represent the reality of the process.

In this paper, we introduce a new LES approach for
interfacial, turbulent multi-fluid flows, based on the filtered
single-fluid Navier–Stokes equations, in which the super-
grid interface kinematics and turbulence are fully resolved.
The description is more detailed than in the original contri-
bution of Liovic et al. (2004). To the best of our knowl-
edge, this study represents a first attempt at capturing
gas-side turbulence and interface/turbulence interactions,
knowing that at this stage it is impossible to resolve the
entire spectrum of turbulence and interfacial deformation
scales. LES is therefore adopted for capturing turbulence
within the framework of the single-fluid formalism. We
first introduce the filtered governing equations within the
single-fluid formalism, and the resulting sub-grid scale
terms that need to be modeled. Our main purpose is to
address the predictive capability of a combined inter-
face tracking/LES approach to understand some subtle
facets of interface–turbulence mechanisms. The method is
applied to a specific turbulent large-scale bubbling process.
Results are discussed and compared to the available data
from the experiment of Meier (1999) and Meier et al.
(2000).
2. Numerical method

2.1. The primitive one-fluid equations

For flows consisting of immiscible fluid parcels of length
scales larger than the grid size, phase inter-penetration is
not presumed. Rather, jump conditions between the two
phases are directly incorporated, such that the separate
equations for each phase k can be replaced by a single set
of equations describing the system. This is the starting
point of the simplification from a multi-field to a single-
field representation of the flow, in which the phases are
identified locally using the indicator (or color) function C.
In the continuous limit, color function C is the Heaviside
function

Cðx; tÞ ¼
1 if x occupied by phase k ¼ G;

0 if x occupied by phase k ¼ L

�
ð1Þ

such that the C-weighted local density defined by

q �
X

k

Ckqk ¼ CqG þ ð1� CÞqL ð2Þ

reduces to liquid density qL or gas density qG. The color
function C helps describe the interface motion by the topol-
ogy equation:

oC
ot
þ ui � rC ¼ 0; ð3Þ

where the interface velocity ui reduces in the non-phase
change case to the local fluid velocity u.

Further, separate species mass conservation equations
can then be described using the local density q:

oq
ot
þ o

oxj
quj ¼ 0: ð4Þ

Since the fluids are taken to be incompressible, the density
of a fluid particle is constant along its trajectory (Dq/
Dt = 0). This suggests that the mass conservation of the
system (4) can be represented by the combination of the
continuity equation, $ Æ u = 0, and the topology equation
(3). This is valid as a statement of volume conservation
in the single-fluid representation of multi-phase flows. De-
tailed derivation of the mass conservation in this context
has been presented by Lakehal et al. (2002a).

For momentum conservation, we propose a local viscos-
ity l that similarly takes the form of Eq. (2), i.e. Dl/
Dt = 0. The constitutive relation between the rate-of-strain
tensor Sij and viscous stress tensor rij presumes both fluid
species to be Newtonian, i.e.

rij ¼ 2lSij with Sij ¼
1

2

oui

oxj
þ ouj

oxi

� �
: ð5Þ

The single-field momentum equations may thus be written
as

oðquiÞ
ot
þ o

oxj
quiuj ¼ �

op
oxi
þ orij

oxj
þ qgi þ cjn̂id: ð6Þ
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The surface tension term here is cjn̂id, where c is the sur-
face tension coefficient, j is the interfacial curvature, n̂i is
the unit interface normal, and d is the surface delta func-
tion. Finally, p denotes the incompressible total pressure.

2.2. The filtered one-fluid equations

2.2.1. The component-weighted volume averaging (CWVA)

procedure

The one-field equations (Eqs. (2)–(6)) are a micro-scale,
primitive description of immiscible, incompressible, New-
tonian two-phase flow. The macro-scale description (at
the super-grid level) of the flow suggests all dependent vari-
ables contain sub-grid scale (SGS) components f 0 ¼ f � �f ,
where the resolvable quantities �f are obtained by convolu-
tion using a spatial filter G:

�f ðx; tÞ � G� f ¼
Z

D
Gðx� x0Þf ðx0; tÞdx0; ð7Þ

verifying the normalization propertyZ
D

Gðx� x0Þdx0 ¼ 1: ð8Þ

The filtered phase indicator function,

Cðx; tÞ � G� C ¼
Z

D
Gðx� x0ÞCðx0; tÞdx0; ð9Þ

is subsequently interpreted as a volume fraction indicator
function. This is the exact definition of the volume-of-fluid
(VOF) quantity. The derivation of the filtered one-fluid
equations is based on the use of the component-weighted
volume averaging (CWVA) procedure (Lakehal et al.,
2002b). In the filtered two-fluid formulation of the momen-
tum equations derived by Lakehal et al., the separate
solutions generated for each phase k were weighted in in-
ter-penetrating-phase regions by the resolved volume frac-
tion. In the single-field description of the flow, the coupling
of C to the flow solution is instead represented through the
local density (Eq. (2)). Therefore, as a basis for CWVA in
the single-field formulation, it is most appropriate to use
the local density q, which in essence is analogous to Favre
averaging for compressible flows:
~f ðx; tÞ ¼ qðx; tÞf ðx; tÞ
qðx; tÞ

: ð10Þ
1 We acknowledge the note raised by of the referees about this issue.
2.2.2. The filtered single-fluid conservation equations

Before proceeding further, it is perhaps useful to bring
in the following conceptual clarification: In the single-fluid
formalism for incompressible, isothermal multi-phase
flows, the mass conservation of the system is described by
both the continuity equation ($ Æ u = 0) and the topology
equation (3).

In using CWVA in this context, the property according
to which filtering and differentiation commute can be
extended to the multi-fluid flow context, too, provided
the discretization is performed over uniform meshes.
Applying relation (7) to the local density yields

�qðx; tÞ �
X

k

Ckðx; tÞqk

¼ Cðx; tÞqL þ ð1� Cðx; tÞÞqG: ð11Þ

For mass conservation, filtering of Eq. (4) via relation (7)
then performing CWVA (10) yields

o�q
ot
þ o

oxj
�q euj ¼ eq

c ; ð12Þ

where eq
c denotes the commutation errors, which will be ne-

glected hereinafter.
Equating Eq. (11) into the filtered mass conservation

equation above allows the filtered topology equation to
be written in the form:

oC
ot
þ o

oxj
C euj ¼ 0; ð13Þ

which unlike in the primitive formulation has now a con-
servative form. This is an interesting outcome compared
to single-phase compressible Navier–Stokes equations
where both the primitive (i.e. DNS) and LES mass conser-
vation equations are conservative.

In typical incompressible finite-volume flow solver tech-
nologies, such as projection and SIMPLE-based solution
algorithms, the coupling between momentum and mass
conservation equations is generally achieved via some form
of the pressure correction equation that features a $ Æ u-
type source term. To extend this feature to the LES con-
text, incompressibility of the fluids can be assumed, in
which case the filtered density should, like in the primitive
formulation, remain constant along the fluid particle
trajectoryeD�q
Dt
� o�q

ot
þ euj

o�q
oxj
¼ 0: ð14Þ

This obviously helps reduce the filtered mass conservation
equation to a simple filtered continuity equation: r � eu ¼ 0.
The validity of this assumption1 is clearly grid dependent,
and its use should be treated cautiously. However, since
LES is by definition a dense grid, refined time simulation,
the incompressibility assumption (14) can be safely made.
It is indeed unlikely that a rigorous LES that is supposed
to provide high-order turbulence statistics can be per-
formed on a coarse grid on which the condition (14) is
not fulfilled. To be coherent, however, this issue can be
solved a posteriori, in the pressure correction equation,
with scope for the entire mass residual ðr � eu � eDq=DtÞ
to be incorporated into the source term. In addition, the fil-
tered topology equation should be solved under the conser-
vative form above (13), which is the case in the present
code (Liovic et al., 2006).
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The divergence-free representation of both the primitive
and the phase filtered velocity fields is neither true for high-
speed isothermal flows nor for convective phase-change
situations.

Performing the convolution product on the momentum
equations and applying the local density-based CWVA (10)
yields

o�qeui

ot
þ o

oxj
�qeuieuj ¼ �

o�p
oxi
þ oerij

oxj
þ �qgi þ c�jn̂id

� osij

oxj|fflffl{zfflffl}
I

þ eu
c|{z}

II

þ ed|{z}
III

þ ec|{z}
IV

; ð15Þ

where we have made use of the identity

ed �
o

oxj
½rij � erij�; ð16Þ

and introduced the local (phase-specific) SGS tensor, de-
fined as

sij � �qðguiuj � eui eujÞ: ð17Þ
Term II designates the sum of errors which appears if com-
muting between the filtering and differencing operators
were not assumed explicitly. Term III represents the in-
ter-phase net force between the two fluids at the sub-grid
level. It could represent the drag and lift forces for a bubble
of a diameter smaller than the filter width. Similar to ed, the
last term (IV) appears as a non-linearity error, which van-
ishes away from the interface, i.e.

ec ¼ cjn̂id� c�jn̂id: ð18Þ
It denotes the non-resolved counterpart of surface tension,
which has been washed out by filtering. The SGS modeling
of non-resolved interfaces is less clear than that of the non-
resolved turbulence. In turbulence, the smallest length scale
of the problem is the Kolmogorov length scale. In contrast,
the non-resolvable interfacial scales are difficult to charac-
terize, even if there exists an approximate scale based on
the critical length (lc) determined from the balance between
surface forces and local turbulence intensity. However, the
main reason for not modeling the SGS interfacial scales is
that the super-grid surface tension force itself cannot be
computed accurately enough with current schemes. Surface
tension discretization schemes often lead to parasitic cur-
rents – a non-physical numerical forcing that, in a range
of multi-phase flows, can be as great a contribution to a
velocity-field update as advection-scheme numerical dissi-
pation. In other words, it does not suffice to again split
the curvature or the normal vector into resolved and SGS
components – ultimately giving rise to extra unresolved
quantities – before clarifying the interaction mechanisms
between non-resolved turbulence and non-resolved interfa-
cial scales.

2.3. SGS modeling

In the present study, centered differencing is used for
momentum advection, and stability is preserved with the
help of the dissipation contribution from explicit SGS
modeling. The standard Smagorinsky-kernel-based SGS
model was employed using a value of the damping constant
Cs = 0.1 – a value inferred from earlier LES computations
of a turbulent bubbly flow by Lakehal et al. (2002b) using
the dynamic approach (DSM) of Germano et al. (1991).
The DSM approach could not be used because, in contrast
to mixing layers and wall bounded-flows, there is no homo-
geneous direction over which the constant Cs could be
averaged in bubbling processes. Three-dimensional averag-
ing of Cs would lead to very small values because turbu-
lence is essentially concentrated in the bubbling region, as
will be shown later. Turbulence near-wall damping was
achieved by incorporating the van Driest expression into
wall functions. Note finally that for interfacial flows sepa-
rated by well-defined continuous fronts, any well-estab-
lished SGS model for single-phase flow could be applied,
since the Reynolds stresses are density-weighted for each
phase. Both the class and width of the space filter could
vary from one phase to the other, too. Models more elab-
orate than eddy viscosity-based SGS models could also be
employed, including, for example, those based on the
deconvolution principles. However, the fact that the lighter
phase perceives interfaces as evolving rigid boundaries
(Fulgosi et al., 2003) suggests that a near-interface
treatment is required, in a similar manner to wall flows.
Interface functions are thus needed, which could be incor-
porated into models based on distance function about the
interface.

2.4. Numerical schemes

2.4.1. Interface tracking

Vigorous bubbling imposes special requirements for
interface tracking methods, in that any particular method
must robustly and accurately capture all stretching, frag-
mentation and coalescence phenomena induced by gas
injection. The range of interface length scales and high-cur-
vature interfaces generated in bubble break-up, liquid elon-
gation, bubble coalescence and other phenomena represent
a major challenge to particle-based and level-set methods,
in that rigorous local volume conservation becomes neces-
sary, and the breaking of a closed surface into multiple
closed surfaces must be captured. Ultimately, volume
tracking (VOF methods) based on piecewise planar inter-
face reconstruction (commonly known as PLIC-VOF
(piecewise linear interface calculation) (Rider and Kothe,
1997) is currently the best interface tracking scheme for
robustly and accurately tracking the kinematics, creation
and destruction of all resolvable interfaces in such flow
problems. In the implementation used here, the 3D
PLIC-VOF scheme features piecewise planar interface
reconstruction based on the Youngs’ (1982) gradient, and
uses direction splitting to extend one-dimensional flux
updates to 3D (i.e. a three-step update of C). With this
scheme, bulk-property distributions such as density and
viscosity are geometrically extracted from the interface
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reconstructions. The location of the interface described by
the color function is used to model surface tension, using a
fully kernel-based variant of the continuum surface force
(CSF) method of Brackbill et al. (1992).

2.4.2. Other numerics and code issues
Meaningful LES requires long computational times, and

as such simulating all the transients in interface tracking-
based LES requires adequate computing power. The com-
puter code employed here simulates transient 3D flows in
complex geometries on distributed-memory platforms,
with MPI-facilitated parallelism based on domain decom-
position. The flow solver is based on a standard projection
method and second-order Euler time-stepping (Liovic
et al., 2002). Using domain decomposition, the computa-
tion is sub-domain-based, thus helping achieve scalable
parallel performance. An additional contribution to scal-
able parallel performance is provided by a Krylov sub-
space-based Poisson solver featuring Additive Schwarz
pre-conditioning, in which rudimentary interface condi-
tions between sub-domains are used in order to minimize
interprocessor communication.

3. Air venting through a downward-facing pipe

In the bubbling process investigated here, air is vented
downwards through a vertical pipe into a water bath
(Fig. 1). The pipe is referred to as a ‘‘downcomer’’ in the
thermal hydraulics lexicon and as a ‘‘lance’’ in extractive
metallurgy. Previous to this work, Hirt and Nichols
(1980) had considered this problem with a weak-compress-
ibility hydrodynamics solver, but as a demonstration appli-
cation, without providing insight into the phenomena and
physics of the flow. In more recent studies, Meier et al.
(2000) and Liovic et al. (2002) have had success in predict-
ing this class of flow using VOF under laminar flow condi-
180 mm

450 mm

ID
50 mm

Q = 10 l/s

450 mmOD
72 mm

y

x

z

Fig. 1. Setup of the computational domain.
tions. This flow has been deliberately selected for having
dual dynamical aspects: the inertia-dominated jetting from
the pipe tip is in the opposite direction to the buoyancy
force associated with free bubble rise, such that the prevail-
ing flow physics can be distinguished to a substantial
extent. From the turbulence point of view, the presence
of the pipe wall results in shear flow that is further compli-
cated by the dynamics associated with a highly deformable
interface. From the interface dynamics point of view, the
presence of the pipe obstructing the detachment and rise
of formed bubbles results in a variety of phenomena, e.g.
instability of annular bubbles and the formation of vortex
rings taking the form of ‘‘mushroom-cloud’’ bubble inver-
sions (Meier, 1999).

3.1. Problem setup

To conform with the experiments performed by Meier
et al. (2000), the computational domain of height and
breadth 450 mm (Fig. 1) was discretized using an orthogo-
nal, non-uniform 643 mesh. The pipe (inner diameter
50 mm, outer diameter 72 mm), was centrally located, with
its tip 180 mm above the bottom of the domain. The xy-
plane (where z is vertical) was refined in a ‘‘core bubbling’’
region (225 mm · 225 mm) using spacing corresponding to
a 96 · 96 mesh, and the pipe diameter was resolved by 10
cells. Except for the inflow area, the top boundary was rep-
resented as an outflow boundary. Free-slip boundary con-
ditions were applied to the bottom surface and to the
vertical planes of the domain.

In the present study, air venting occurs at 10 l/s, and is
not choked i.e. the injection flow rate is constant. This is
a particular case documented by Meier et al. The Reynolds
number of the pipe flow is 17,000. Within the range of air
venting flow rates considered in Meier’s experiment, the
10 l/s case represents a transition between lop-sided and
symmetric bubble rise, as well as between laminar and tur-
bulent gas-side flow. Gaussian perturbations were superim-
posed on the initially quiescent bulk flow, providing a
turbulence intensity of 0.5% relative to the mean inflow
velocity. Simulations were performed on a 16-CPU parallel
computer, using a Courant number of 0.2 and signal sam-
pling at 1000 Hz.

3.2. Transient large-scale bubbling phenomena

Fig. 2 shows sample snapshots of bubble interfaces cap-
tured during the simulation. For qualitative comparison,
the figure also shows sample snapshots of bubble surfaces
captured on video at the same flow rate. Noteworthy phe-
nomena include almost symmetric bubble growth and rise,
‘‘fingering’’ of the upper bubble surface during rise, and
lop-sided bubble detachment and free-rise. The simulation
of the observed bubble fragmentation demonstrates the
ability of VOF to robustly capture the most challenging
interface kinematics in a realistic manner, even down to
generating and preserving the satellite bubbles.



Fig. 2. Snapshots of the bubbling resulting from air venting through a downcomer, for air flowing at 10 l/s into a water bath. First and second rows:
simulation; third and fourth rows: experiment (from the work of Meier, 1999). The first two experimental snapshots are within the time frame captured by
simulation, while the other four snapshots are representative of steady-state operation.
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From commencement of air venting, the snapshots pre-
sented in Fig. 2 correspond to a time interval of 1.1 s. Of
the 10 l/s Meier experimental snapshots shown in the fig-
ure, the first two occur within the simulated time interval,
while the others correspond to steady-state bubbling
beyond this interval. Steady-state bubbling from the tip is
established early on in the 1.1 s interval; by the end of
the simulated interval, O(101) bubbles have grown,
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Fig. 3. Transient behavior of the level of upper bubble surface during
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detached and risen away from the pipe tip. Beyond the
growth of the first bubbles (start-up), the data within the
envelope of the bubble plume is fairly representative of sta-
tistically steady flow. One feature of the flow within the ini-
tial 1.1 s interval that is not sustained into the long-term
statistically steady flow is the presence of a low-concentra-
tion dispersion of entrained bubbles well below the bubble
plume envelope of steady-state venting. Due to the surge of
the first jet into an initially quiescent bath, this dispersion
has little effect on the flow associated with the bubble
plume above it, and the region deep below pipe tip is of lit-
tle interest in the current study.

The transitional nature of the bubbling in the 10 l/s air
flow-rate case is shown in Fig. 2. The first visible transition
shown in the experimental frames is that between symmet-
ric rise of the growing bubble and lop-sided rise. The sec-
ond visible transition relates to interface wrinkle scales
covering the majority of the bubble surface, with transition
between smooth interface dominance and chopped-up
interface dominance. The snapshots in Fig. 2 show that
transition of both types is captured in both directions.

In the case of constant volumetric flow rate venting and
away from the high-flow-rate end of the spectrum, Meier
(1999) found bubble growth to exhibit less distinguishable
growth/detach patterns, but rather a quasi-continuous
escape of gas to the side. This lop-sidedness, faithfully cap-
tured in the simulation, was noted in the experimental
work to be a factor that seriously complicates measurement
of bubbling frequency. In such cases, pressure signal anal-
ysis was considered to be useless; bubble counting exclu-
sively was used in experiment to determine the bubbling
frequency in constant flow rate venting, and is therefore
also used here. Table 1 shows the bubbling frequency
extracted from the simulation to match the frequency cap-
tured in the experiment for air–water systems.

Given the nature of the video image database for the
10 l/s case (Meier, 1999), quantitative comparison for vali-
dation between simulation and experiment is best achieved
using start-up data. Level measurements of the bubble
upper surface, and the maximal spreading of the growing
bubble away from the outer pipe wall at tip level were com-
pared. Fig. 3 shows the time-history of the bubble upper
surface level; the comparison is excellent over the entire
time-history of start-up. In the comparison of the maximal
spreading of the bubble plume, the simulation overesti-
mated the spreading by 7% compared to measurements.
The agreement between simulation and experiment using
three different measures for quantifying bubbling, even at
Table 1
Measurements generated from simulation and experiment of the 10 l/s air
venting experiment of Meier (1999), during start-up and in the establishing
of steady-state bubbling

Simulation Experiment

Tip-level spread – first bubble (mm) 48 45
Bubbling frequency (Hz) 7 7
the current mesh resolution, is a strong validation of the
numerical method applied to the bubbling problem under
investigation. The level of the lower bubble surface is not
appropriate for use in quantitative comparison here,
because the extreme fragmentation from the lower bubble
surface, due to the surge of the initial jet, is poorly resolved.

Another event observed but not documented here is the
vigorous break-up of bubbles well above pipe tip level. This
level is often at �5Di above, where our characteristic length
scale is the internal pipe diameter Di. This break-up takes
the form of a ‘‘mushroom-cloud’’ – an abrupt inversion
and radial expansion of the bubble plume, and resembles
bubble swarming, i.e. massive fragmentation into smaller
bubbles. This bubble swarming is captured in simulation,
but we ignore this aspect of the flow here because of the
close proximity of the outflow boundary.
3.3. Interfacial area evolution

The interfacial area and bubble volume were computed
in a sub-domain excluding flow zones located above
z = 0.35 m, in order to avoid using unreliable sampling
results in proximity to the outflow. Fig. 4 shows (a) the
bubble interfacial area, (b) the bubble plume gas volume,
and (c) the plume surface-area/volume ratio, for the dura-
tion of the simulation. After the growth of the initial bub-
bles, the surface area exhibits a cyclic variation about a
mean value, followed by a second surge near the end of
the time interval. Large bubble volumes are seen to result
from the more symmetric bubble growth events seen in
Fig. 2, while the other peaks coincide with more lop-sided
bubble growth scenarios. Resemblance between the interfa-
cial area signal and the bubble volume signal is apparent,
with maxima, minima and inflections shown to be in phase
and of similar magnitude relative to the maxima of the first
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Fig. 5. Plane interface locations and velocity vector maps at different
instants: yz-plane for (a) 643 resolution; (b) 963 resolution at a different
flow rate (16 l/s). (Axis lengths in m.)
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bubble. The interfacial area signal shows significant low-
amplitude noise, as compared to the bubble volume
signal.

The surface-area/volume ratio is at its lowest level in the
early stages, when a smooth-surfaced single growing bub-
ble prevails. Upon the establishment of steady-state condi-
tions, the ratio converges to an average of approximately
200:1, with a relatively low standard deviation. Normaliz-
ing with the surface-area/volume ratio for a spherical bub-
ble of constant diameter, this average value corresponds to
a dispersion of spheres of diameter � 6�D. Length �D ¼
ðdxdy dzÞ1=3 can be interpreted as the average resolvable
length scale of the gas phase.

3.4. Interface/turbulence interactions

Fig. 5(a) shows a profile through the axis of symmetry of
the velocity vector map and interface location at a particu-
lar instant during the 10 l/s simulation. The interaction
between the interface and the large-scale structures formed
in the gas phase well illustrated. One form of such interac-
tion is the formation of distinct lobes. Another feature
shown by Fig. 5(a), and even more clearly by Fig. 5(b)
(taken from a 16 l/s simulation on a 963 mesh), is the exis-
tence of high-shear flow zones, that we have deduced to lay
between the structures of the distinct lobes. High vorticity
values shown in Fig. 6(a) are concentrated in the gas-side
flow in the vicinity of the pipe tip, and some of the highest
regions of vorticity indeed coincide with high-shear flow
zones.

From comparing the 2D center-plane plot of vorticity in
Fig. 6(a) to the corresponding interface profile of Fig. 5(a),
a damping of vorticity can be seen as the interface is



Fig. 6. Instantaneous and time-averaged yz-plane distributions: (a) vorticity magnitude, and (b) lT/l, at t = 0.23 s; (c) time average w-velocity, (d) root-
mean-square w-velocity.
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approached from the gas side. This observation is consis-
tent with conclusions drawn from DNS of counter-current
stratified flow of Fulgosi et al. The contribution of the eddy
viscosity from the SGS model, lT, to the total viscosity dis-
tribution, reveals that higher values coincide with high-vor-
ticity gas-side flow regions. Locally higher values of lT in
Fig. 6(b) informs that the portion of the spectra washed
out as a consequence of under-resolution of turbulence
coincides with the high eddy-viscosity regions. The Smago-
rinsky SGS model used in the present work is also known
to be overly dissipative and not to accommodate backscat-
ter of energy, and is one contribution to the possibly high
magnitudes of lT. The value of the ratio lT/l peaks in
the 100–200 range in the high-shear region below the pipe,
as indicated by the arrow in Fig. 5(b), whereas in the rest of
the domain around the injection region, it lies within an
acceptable (in the LES sense) interval range of 5–20. This
result shows that the grid employed here is sufficiently fine
to resolve most of the flow scales; a local grid refinement
below the pipe tip (in the high shear zone) would help
indeed provide a better resolution there.

Fig. 6(c)–(d) presents average and root-mean-square
(rms) results of downward velocity in the yz-plane through
the center of the pipe. The degree of asymmetry in these
time-averaged results indicates that the actual simulation
interval of 1.1 s does not provide a satisfactory approxima-
tion to a long-time average (compared to the LES of single-
phase channel flow, for example), and suggests the need for
even more computations to completely average out the
asymmetries. The most intense velocity fluctuations are in
the bubbling-jet area under the pipe tip, while a second
area at about 5Di above the pipe tip coincides with the
mushroom-cloud region. More generally, areas of more
intense velocity fluctuations coincide with the bubble
plume, with gas-side turbulence intensity substantially
greater than in the liquid. Away from the bubble plume,
both in the pipe flow and the liquid-side flow, turbulence
is low. Velocity fluctuations are an order of magnitude



Fig. 7. Coherent structures within the gas-side flow at t = 0.15 s (top row),
t = 0.25 s (middle row), and t = 0.35 s (bottom row), after the commence-
ment of the bubbling simulation: (a) the iso-surface of k2 = �25,000, and
(b) the iso-surfaces of the �500/500xz vorticity pair.
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smaller in the liquid-side flow as compared to the gas-side
flow, and lT/l are O(10)–O(102) smaller.

3.5. Coherent structures

The presence of the pipe and the gas-liquid interfaces
seen from the gas-side as rigid walls contribute significantly
to vorticity generation in the flow. Vorticity may therefore
not be useful for coherent structure (CS) identification in
this flow, because CS-specific contributions to the vorticity
may be obscured by the near-wall/interface flow. In Fulg-
osi et al. (2003), a range of different measures were used
in an attempt to extract CS from flows featuring a well-
defined deformable interface. Jeong and Hussain (1995)
introduced a CS identification technique based on the neg-
ative eigenvalue of second-largest magnitude from the ten-
sor sijsjk + rijrjk, where sij and rij are the rate-of-strain and
vorticity tensors respectively. Referred to as the �k2

approach, it was found in various simulations to provide
the most accurate and thorough identification of CS even
in near-interface turbulent flow, and is used here.

Fig. 7(a) shows iso-surface visualizations of CS using the
�k2 approach at three instants in time that are consecutive.
The opaque iso-surfaces correspond to k2 = �25,000,
which was found to optimally filter out non-CS vorticity.
The bubble surfaces, indicated by the C ¼ 0:5 iso-surfaces,
are made translucent so as not to obscure CS. The align-
ment of CS shape with lobes in the surface of the large bub-
ble in rise about the pipe is obvious. Impressively, despite
lobes being resolved by no more than 10 mesh cells, the
use of �k2 allows specific CS such as hairpin vortices to
be recognizable.

Within the bubble plume rising about the pipe, CS is
more concentrated in the lower half – which is not surpris-
ing in view of the high intensity of vorticity in the inertial
jetting area near the pipe tip. At a height of 2Di–3Di above
the pipe tip, the second frame shows substantial CS within
the uppermost surface of the rising bubble plume. By the
last frame however, the bubble swarm is seen to rise further
away from the pipe tip, and the CS dissipate gradually. The
mushroom-cloud is clearly visible by the time of the last
frame; the accompanying fragmentation results in smaller
lobes in gas volumes trapped within large bubbles, as well
as many bubbles of smaller size. More notably, however,
small lobe/bubble formation has the effect of locally lami-
narizing the gas flow. Even if more nodes were available
for better resolution, the proportion of void occupied by
CS would be seen to dissipate through the bubble plume.

For comparison with the results of the �k2 approach,
Fig. 7(b) shows the vorticity iso-surfaces of xz = �500
and 500 at the same times as in Fig. 7(a). The xz-pair
clearly displays counter-rotating vortical structures – pro-
viding virtually the same insight as from the neighboring
panel (a). Note that the choice of |xz| = 500 is qualitative:
larger values filtered out too much structure, while lower
values did not adequately decouple flow structures. Visual-
ization with the enveloping bubble iso-surface shows the
structures associated with the |xz| = 500 cut-off, for the
most part, to fully coincide with the lobes. In the inertial
jetting area the coherent structures should have been seen
within the large-scale lobes in the bubble surface, but vor-
ticity iso-surfaces seem incapable of resolving these struc-
tures there. The use of vorticity iso-contours is seen here
to be somewhat inferior to the �k2 approach for CS iden-
tification in this category of flow.
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3.6. Azimuthally-averaged results

To characterize the plume boundaries about the down-
comer as a function of distance from the pipe axis, the
time-averaged results in 3D Cartesian space are averaged
azimuthally in the xy-plane about the axis. A list of radial
distances is created, and a minimum one-mesh-cell thick
support of cells is flagged about each radial distance. Once
the support of cells about any target radius, d, is identified,
an inverse distance-based interpolation is used to generate
an azimuthally-averaged value. As an example, an azi-

muthally-averaged value of the void fraction, hCi, is deter-
mined by

hCi ¼
P
ði;j;kÞ�dwi;j;kCi;j;kP

i;j;k�dwi;j;k
; ð19Þ

where

wi;j;k ¼
1

jxi;j;k � xr;hjp
ð20Þ

with p = 1/2 being used for smoothness of the profiles. In
the present study, two xy-slices are analyzed – one slice
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Fig. 8. Azimuthally-averaged radial profiles of C and Crms: (—) refers to
the xy-plane at a distance of 0.45Di below the downcomer tip, and (- - -)
refers to the xy-plane at a distance of 0.9Di above the downcomer tip.
at a distance of 0.45Di below the pipe tip, and the other
slice at a distance of 0.9Di above the downcomer tip.
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Fig. 11. Energy spectra for azimuth (a) – top row – 0.9Di below tip, 0.4Di off-axis, azimuth (b) – second row – 0.9Di below tip, 1.3Di off-axis, and azimuth
(c) – third row – 0.9Di above tip, 0.9Di off-axis. Columns show representative point spectra of phase-independent signals (i), gas-specific signals (ii), and
liquid-specific signals (iii), respectively. Use was made of the color function C to distinguish gas flow events from liquid flow events.
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Fig. 8 shows the radial profiles of the average and rms of
the void fraction, hCi and hCirms. For the curves corre-
sponding to the plane below the tip, the pipe does not inter-
sect the plane, such that both the average and rms



Table 2
Properties of the turbulence in the flow, in different regions of the domain

�

(kg m�1 s�3)
�/q
(m2 s�3)

lk
(m)

Uk

(m s�1)

(a)

Large sub-domain 37.6 9.1 · 10�2 5.8 · 10�5 1.7 · 10�2

Jetting region 1435.4 2.0 2.7 · 10�5 3.8 · 10�2

Buoyant rise region 76.7 8.0 · 10�2 6.0 · 10�5 1.7 · 10�2

(b)

Large sub-domain 1.6 1.6 · 10�3 1.6 · 10�4 6.3 · 10�3

Jetting region 26.7 2.7 · 10�2 7.9 · 10�5 1.3 · 10�2

Buoyant rise region 2.0 2.0 · 10�3 1.5 · 10�4 6.7 · 10�3

(c)

Large sub-domain 5371.5 13.9 1.7 · 10�5 6.2 · 10�2

Jetting region 5331.0 14.0 1.7 · 10�5 6.2 · 10�2

Buoyant rise region 5961.8 12.8 1.7 · 10�5 6.0 · 10�2

Statistics include the dissipation rate �, the rate normalized by an average
void fraction ðCÞ weighted density q, the Kolmogorov length scale lk, and
the Kolmogorov velocity scale Uk. Different sets of statistics have been
obtained, in which point data in the integral computation for � is (a)
phase-independent (all data points included), (b) liquid phase-specific (all
points of where C < 0:02) included, and (c) gas phase-specific (all points of
where C > 0:50).
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distributions are continuous and smooth. The major differ-
ence between the average and rms curves of C is that the
average curve features a bell-shaped distribution, while
the rms profile exhibits a much broader peak. The curves
corresponding to the plane above the tip show clear delin-
eations between the flow in the bubble plume and the
downward pipe flow. It can be seen that the bubble plume
is slightly broader in the plane above the gas tip, and the
rms fluctuations in void fraction are more intense – consis-
tent with bubble rise through the plane. There is also a
reduction in bubble plume void fraction adjacent to the
outer pipe wall, and a more pronounced reduction in rms.

Fig. 9 shows the radial profiles of the average and rms of
the w-velocity, hwi and hwirms, scaled by the mean gas
inflow velocity. For both planes considered, the mean ver-
tical velocity is upwards in the region beyond the pipe
radius; the profiles look similar, albeit with higher veloci-
ties for the plane above the tip, which was to be expected
from the bubble acceleration up the plume. The downward
velocity profile in the plane above the tip corresponds to
the pipe flow. The profile in the plane below the pipe tip
is dilated in the region beyond the outer pipe diameter by
lateral spread of the jet, and the w-velocity fluctuations
are high in the jetting region. Finally, Fig. 10 shows the tur-
bulent kinetic energy profile in the same planes, confirming
that the turbulence is concentrated in the gas-side flow with
particularly high-intensity in the jetting region below the
pipe tip.

3.7. Energy spectra and dissipation

The spectra shown in Fig. 11 were obtained by velocity
signal recording for sample points in selected azimuths
about the pipe axis. Azimuth (a) corresponds to a ring
0.9Di below the pipe tip and 0.4Di off-axis, azimuth (b) cor-
responds to 0.9Di below the tip and 1.3Di off-axis, and
azimuth (c) corresponds to 0.9Di above the tip and 0.9Di

off-axis. Signals at 16 equally-spaced points were recorded
in each azimuth, as well as the spatial average. The col-
umns identify spectra of signals that are: (i) phase-indepen-
dent, (ii) gas-specific, and (iii) liquid-specific. The energy
spectra of the azimuthally-averaged phase-independent sig-
nals (results not included here) reveal the existence of an
inertial sub-range characterized by a �5/3 decay law that
prevails in all selected azimuths. The phase averaging
might have embodied information that could be made evi-
dent only by the examination of individual sample signals.

The spectra of the phase-specific signals shown in col-
umns (ii) and (iii) were introduced because, during the
course of a simulation, the phase occupying that point
may switch between gas and liquid. It is therefore possible
that there is not only one type of turbulence that prevails at
that point; different forms of turbulence with different
energy decay behaviors can be conjectured to prevail dur-
ing the simulation. Specifically, based on the assertion that
turbulence does not cross interfaces, one could conjecture
that the less apparent turbulence in the liquid phase makes
interpretation of the energy cascade based on a continuous
single-fluid velocity signal meaningless.

Comparing the phase-independent spectra and the gas-
specific spectra (top row, columns (i) and (ii)), the magni-
tudes of the energy profiles are virtually the same, since
the jetting area is essentially occupied by the gas. The mag-
nitudes of the liquid-specific spectra (top row, column (iii))
are one order smaller. The prevailing �5/3 decay law of
spectra from all signals in that azimuth confirms that in
the region immediately underneath the pipe tip, turbulence
is shear-dominated. In the second row, the scatter between
energy amplitudes at high wave numbers is significant, and
suggests that the intermittency of the phase prevailing in
any azimuth is highest for azimuth (b). This is in line with
the progressive tendency towards the �8/3 power law
appearing in the second row. More importantly in the cur-
rent problem, the �8/3 power law – a finding confirmed
experimentally by Lance and Bataille (1991) for the
liquid-side turbulence – does not seem to be specific to
any phase. The �8/3 power law slope is seen even more
clearly in azimuth (c), and implies a faster energy decay
is induced by the presence of fragmented satellite bubbles.
The first conclusion to be drawn from the above discussion
is that turbulence in the jetting area is dominated by shear,
whereas above and to the side of the pipe tip, it is con-
trolled by buoyancy. The second conclusion is that, albeit
different in magnitude, continuous phase-independent
energy spectra and phase-specific energy spectra provide
the same picture of the energy cascade in different portions
of the flow. Gas-phase and liquid-phase turbulence are
inseparable.

Table 2(a)–(c) shows dissipation rates, and Kolmogorov
length and velocity scales, generated from the rms flow field
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upon which Fig. 6 is based. The dissipation rate, and Kol-
mogorov length and velocity scales, are determined by

� ¼ 1

X

Z
X

lþ lTð Þ oui

oxj
þ ouj

oxi

� �2

dV ; ð21Þ

lk ¼
hmi3hqi
�

 !1=4

; ð22Þ

Uk ¼
�hmi
hqi

 !1=4

; ð23Þ

where the overline represents time-averaging (and the oper-
ator h� � �i space-averaging in Eqs. (22) and (23)) of bulk-
property distributions, and X the selected integration
domain. Three different sub-domains were used for integra-
tion: the entire flow domain minus the regions in the vicin-
ity of the outflow and the outer vertical boundaries, the
jetting region underneath the downcomer tip, and the
buoyant flow region above it and in a tighter annulus about
the pipe. Gas-specific and liquid-specific results were
obtained for each region. Local data of C < 0:02 and
C > 0:5 were used to identify the liquid- and gas-specific
dissipation rates, respectively; the upper bound was set
because the majority of the domain is essentially liquid.
The jetting and buoyant regions feature higher dissipation,
and the gas-side turbulence is more pronounced. Given a
minimum top-hat filter width of 4.7 · 10�3 m, the Kol-
mogorov length scales are O(102) smaller, thus justifying
the need for a higher grid resolution to perform adequate
LES of this type of flow. The Smagorinsky kernel for
SGS modeling in LES is known to be overly dissipative
and to not accommodate backscatter, but in any case the
ratio of the filter width to the Kolmogorov scale shows
us to be far from a DNS of this bubbling process.

3.8. Interface–turbulence structure correlation

Although Figs. 5 and 7 provide visual evidence of corre-
lation between gas-side turbulence and the interface, they
represent only snapshots in time, and are inadequate for
any parametric assessment of interface–turbulence cou-
pling. As a first step towards extending the fundamental
knowledge of these interaction mechanisms to flows featur-
ing significant topology changes and massive fragmenta-
tion and coalescence, we attempt to correlate filtered flow
variables that separately quantify the interface and the
turbulence.

For that purpose, we first adopt the second invariants of
the fluctuating strain rate and vorticity tensors sij and rij as
potential indicators of turbulence structures, i.e. jSj ¼ffiffiffiffiffiffiffiffiffi

sijsij
p

and jxj ¼ ffiffiffiffiffiffiffiffiffi
rijrij
p

, where

sij ¼
1

2

ou0i
oxj
þ

ou0j
oxi

� �
and rij ¼

1

2

ou0i
oxj
�

ou0j
oxi

� �
ð24Þ

denote the fluctuating rates of strain and vorticity. Options
for describing the interface deformations include its dis-
tance function and its local curvature. Surface curvature
computation involves only small storage overhead since it
is already determined in the surface force modeling. In con-
trast, constructing the distance function from 3D VOF
data is currently difficult and costly for flows featuring
massive stretching, fragmentation and coalescence. There-
fore, we consider correlations between strain rate and cur-
vature, and between vorticity and curvature. We actually
correlate using the magnitude of the curvature, |j|, to best
make use of interpolated curvature estimates from CSF-
based surface force modeling schemes.

The first correlations considered are space-based mea-
sures of interface deformations and turbulence interac-
tions, hCorr1(|S|, |j|)i and hCorr2(|x|, |j|)i, defined by

hCorr1ðjSj; jjjÞi ¼
hjSj0jjj0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjSj0jSj0i
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjjj0jjj0i
p ð25Þ

(hCorr2(|x|, |j|)i is similarly defined). The h� � �i operation
represents space-averaging over the support of the inter-
faces at any instant in time. We then consider the same cor-
relations but over time, denoted by Corr3ðjSj; jjjÞ and
Corr4ðjxj; jjjÞ, and defined as

Corr3ðjSj; jjjÞ ¼
jSj0jjj0ffiffiffiffiffiffiffiffiffiffiffiffiffi

jSj0jSj0
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

jjj0jjj0
q ð26Þ

Corr4ðjxj; jjjÞ is similarly defined). The overbar represents
time-averaging at any point in space. To distinguish,
hCorr1i and hCorr2i; are functions of time, while Corr3

and Corr4 are functions of space.
Fig. 12 shows the spatial correlations of |S| and |x| with

|j| within the interface support, Corr1 and Corr2, at each
point in time. The strain and the vorticity correlate with
the interface curvature identically. Given that the interface
is seen from the gas side like a rigid wall, it is not surprising
that bubble movement – be it bubble growth or bubble
growth or rise – is accompanied by an internal flow align-
ing itself with the interface.
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Fig. 13 shows the time correlations Corr3 and Corr4 at
each point within various xy-plane slices, as well as in the
xz- and yz-planes through the axis of symmetry in the pipe.
The flood contours are used for the correlation distribu-
tions themselves, whereas thick line contours show the
locations of 0.01, 0.5 and 0.99 time-averaged void-fraction
contours; the 0.01 contour is always the outermost void-
fraction contour. High correlation regions align with the
0.01 void-fraction contour the best, coinciding with areas
where the bubble has expanded out. The results of these
two correlations in particular confirm that high-strain,
high-vorticity flow regions do indeed coincide with more
wrinkled high-curvature surface areas. In general, the vor-
ticity is seen to correlate with curvature slightly better than
the strain rate.
Fig. 13. 2D slices of time-averaged correlations Corr3ðjSj0; jjj0Þ (left column) an
(b) xy-plane at tip level, (c) xz-plane through geometric center, (d) yz-plane th
Having identified the difference between strain and vor-
ticity magnitudes as bulk distributions and curvature as a
property of the interfaces, it is worth noting that the curva-
ture scales inversely with the local interface length scale,
and that high-curvature sections of any interface corre-
spond to relative fine wrinkles in the interface.

3.9. Enstrophy/Interface interactions

As an alternative way to separate the contributions
of small-scale and large-scale vortical structures on the
kinetic energy concentrated at the interface, we introduce
the concept of filtered interface-specific enstrophy ðx2

I Þ
and filtered gas-side enstrophy ðx2

GÞ. The first measure is
defined as
d Corr4ðjxj0; jjj0Þ (right column): (a) xy-plane 1.8D below downcomer tip,
rough geometric center.
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x2
I ¼

P
ijkCi;j;kð1� Ci;j;kÞðx2

x þ x2
y þ x2

z ÞP
ijkCi;j;kð1� Ci;j;kÞ

; ð27Þ

where the filter C(1 � C) has been introduced to weight
contributions such that the function peaks at the interface
and reduces to zero in homogeneous regions of the domain.
Using this filter helps determine the energy contained by
small-scale eddies that directly contact the interface. The
gas-side enstrophy is similarly defined by

x2
G ¼

P
ijkCi;j;kðx2

x þ x2
y þ x2

z ÞP
ijkCi;j;k

; ð28Þ

where use was made of the color function C to filter out the
liquid-side vorticity. The summation is actually performed
over a (4Di)

3 sub-domain centered around the downcomer
tip, in which the probability of the presence of the interface
is high. The areas in proximity to the upper boundary are
also ignored.

Fig. 14 shows the evolution of x2
I and x2

G over time. The
first feature to note is the temporal alignment of the peaks
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Fig. 14. Time signals and spectra of the square of the enstrophy (x2): (- - -)
refers to space-averaged enstrophy in the large bubble region isolated to
the interface using the C(1 � C) filter, (—) refers to space-averaged gas-
side enstrophy (C filter) in the large bubble region. (Time in s, enstrophy in
s�2.)
and troughs in the signals. Gas-side enstrophy x2
G is larger

than x2
I by a factor of about five, suggesting that the major-

ity of the kinetic energy is contained in the large-scale gas-
side vortical structures, and less is associated with the
surface deformations and fragmentation. The results also
suggest that there is a clear out-scatter of vorticity-induced
energy, from large-scale motions in the core gas flow, to
small scales concentrated at the interface, revealing a
strong dependence of the interface topology on the vortic-
ity in the core flow. Having said that though, a non-negli-
gible amount of kinetic energy resides in the small-scale
structures associated with the interface wrinkling. FFT of
the enstrophy signals yield a few low-frequency peaks –
the dominant mode peaks at 6 Hz, while sub-harmonics
are visible in the 10–20 Hz range. The similarity of the
main mode to the bubbling frequency is notable, but no
specific correlation of peaks or troughs with structures in
the flow can be clearly established.

3.10. Interface wrinkling

Turbulence in the vicinity of the interfaces is one poten-
tial cause for small-scale wrinkles in chopped-up bubble
surfaces. It may also be a mechanism purely driven by
interface instability: after the most dominant mode (i.e.
the initially spherical-toroidal bubble shape) saturates, it
drains energy to its sub-harmonics. To gain insight into
the interface wrinkling in this process, we define a bub-
ble-plume (surface) displacement from the axis of symme-
try as rC=0.5(x,y, t), which outlines the location of the
plume outer surface. The plume outer-surface location is
determined by sweeping inwards along rays from the axis
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Fig. 15. FFT of bubble-plume displacement rC=0.5, where rC=0.5(h) are
distances along rays emanating from the axis of symmetry to the
outermost bubble surface. This distance is an approximation of the outer
gas envelope at any point in time. (– Æ–) Refers to the xy-plane 0.45Di

below the downcomer tip, (—) refers to the xy-plane at tip level, and (- - -)
refers to the xy-plane 0.9Di above the downcomer tip.
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of symmetry at constant intervals Dh, then identifying it as
the first location along the ray intersected by the interface.
The result represents therefore an outermost extent of the
bubble plume, whether it is the surface of the large bubble
around the downcomer, or of satellite bubbles. This is the
most sensible measure to define, and given that any region
of satellite bubbles around the plume is relatively thin com-
pared to the plume, the measure is accurate for the most
part. The spectrum of this displacement was extracted for
three xy-planes: 0.45Di below the pipe tip, at tip level,
and at 0.9Di above pipe level.

The bubble-plume displacements spectra are shown in
Fig. 15. In all cases, the spectra of the surface displace-
ments cascade according to a �1 power law, and then give
way to leveling out at high wave numbers. The spectra do
not exhibit distinct peaks, but rather suggest that interface
wrinkling is the ultimate end point of a progressive energy
cascading mechanism between surface deformation scales.
Energy accumulation at high wave numbers reflects the
under-resolution of the interface; the average resolved
interfacial scales were already discussed in Section 3.3.

3.11. Sub-filter bubble and drop generation

Fig. 16 shows the cumulative volume function of sub-fil-
ter bubbles and drops migrating across the xy-plane at pipe
tip level. Sub-filter bubbles and drops are identified to be
separate fluid volumes smaller than (3dx)3 in size. The
results show there to be a steady rate of sub-filter droplet
generation during the time-history of the flow, while sub-
filter bubble generation is negligible. The number of sub-fil-
ter bubbles that are apparent at any point in time crossing
the plane ranges from one to four. The results shown in
Fig. 16 can be interpreted physically, because small satellite
bubble generation is physical (as seen in Fig. 2). However,
numerical surface tension is a well-known issue associated
with PLIC-VOF schemes, thereby raising the issue of delin-
eating physical and VOF-induced fragmentation. In addi-
0 0.5 1
Time

0

2×10
-5

4×10
-5

C
um

ul
at

iv
e 

su
bf

ilt
er

 v
ol

um
e

Fig. 16. Cumulative density function of the volume of sub-filter drops
(– Æ–) and bubbles (—) at the downcomer tip level.
tion, the idea of incorporating a dispersed phase into
VOF-based computations – the sort of two-fluid/single-
field hybrid multi-phase flow solver proposed by Cerne
et al. (2001) – could be particularly useful for assigning
realistic dynamics to the sub-filter bubbles.

4. Conclusions

A novel LES formulation for incompressible multi-fluid
flows involving resolvable evolving interfaces has been
introduced. The component-weighted filtered single-fluid
equations have been presented, and the resulting sub-grid
related terms discussed. The method has been applied for
a turbulent bubbling process driven by constant volume
downward injection of air through a pipe into a water pool.
Using a FD/FV-based projection algorithm and robust
interface tracking as the core of the method, the LES has
delivered turbulence statistics that would be difficult to
obtain using other methods. For more modeling-intensive
approaches such as the two-fluid approach, the effort
required for reliable, scalable modeling is much too
daunting.

Interfacial profile comparisons validate the LES as being
able to capture the majority of fully 3D effects in bubble
growth. The transition from symmetric bubbling featuring
smooth surfaces to lop-sided bubbling with chopped-up
interfaces is well captured, and so is the generation of frag-
mentation-induced satellite bubbles. The transition from
lop-sided bubble growth back to growth of symmetric bub-
bles is also captured. Transitions between different modes
of bubble growth are not regular in reality, and this is
reproduced in the simulations, too. The bubbling frequency
is captured correctly to be in the 7–8 Hz range. The quali-
tative and quantitative macro-scale comparisons of the
simulation with experiment validate the simulation as real-
istically capturing the important transient flow events.

The analysis of the turbulence characteristics of the flow
draws the specific conclusions listed below:

• Turbulence is most intense in the gas side; although the
liquid-side turbulence is not as obvious, statistical anal-
ysis yields energy decay there, too. Turbulence in the
shear-dominated jetting region obeys the Kolmogorov
K41 slope. Away from the downcomer tip, buoyancy-
driven bubble rise coincide with faster energy decay rate,
tending occasionally towards the �8/3 power law. A less
intense turbulence is also generated in the region where
vigorous bubble break-up into a swarm of smaller bub-
bles takes place.

• The decomposition of the interface into azimuthal
modes shows an almost linear decay according to a �1
power law, describing a cascade of interfacial radius-
of-curvature length scales.

• The cascade of interfacial length scales is accompanied
by the out-scattering of vorticity from the large-scale
gas-side core flow to the small-scale structures aligning
with the interface wrinkling.
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